Back to Search Start Over

An Arrhythmia Classification Model Based on a CNN-LSTM-SE Algorithm

Authors :
Ao Sun
Wei Hong
Juan Li
Jiandong Mao
Source :
Sensors, Vol 24, Iss 19, p 6306 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Arrhythmia is the main cause of sudden cardiac death, and ECG signal analysis is a common method for the noninvasive diagnosis of arrhythmia. In this paper, we propose an arrhythmia classification model based on the combination of a channel attention mechanism (SE module), convolutional neural network (CNN), and long short-term memory neural network (LSTM). The data of this model use the MIT-BIH arrhythmia database, and after noise reduction of raw ECG data by the EEMD denoising algorithm, a CNN-LSTM is used to learn features from the data, and the fusion channel attention mechanism is used to adjust the weight of the feature map. The CNN-LSTM-SE model is compared with the LSTM, CNN-LSTM, and LSTM-attention models, and the models are evaluated using Precision, Recall, and F1-Score. The classification performance of the tested CNN-LSTM-SE classification prediction model is better, with a classification accuracy of 98.5%, a classification precision rate of more than 97% for each label, a recall rate of more than 98%, and an F1-score of more than 0.98. It meets the requirements of arrhythmia classification prediction and has a certain practical value.

Details

Language :
English
ISSN :
14248220
Volume :
24
Issue :
19
Database :
Directory of Open Access Journals
Journal :
Sensors
Publication Type :
Academic Journal
Accession number :
edsdoj.8123f6ea54a4687b14926c52149237d
Document Type :
article
Full Text :
https://doi.org/10.3390/s24196306