Back to Search Start Over

Effects of Altered Intra-abdominal Pressure on the Upper Airway Collapsibility in a Porcine Model

Authors :
Shu-Lin Ren
Yan-Ru Li
Ji-Xiang Wu
Jing-Ying Ye
Rachel Jen
Source :
Chinese Medical Journal, Vol 128, Iss 23, Pp 3204-3210 (2015)
Publication Year :
2015
Publisher :
Wolters Kluwer, 2015.

Abstract

Background: Obstructive sleep apnea is strongly associated with obesity, particularly abdominal obesity common in centrally obese males. Previous studies have demonstrated that intra-abdominal pressure (IAP) is increased in morbid obesity, and tracheal traction forces may influence pharyngeal airway collapsibility. This study aimed to investigate that whether IAP plays a role in the mechanism of upper airway (UA) collapsibility via IAP-related caudal tracheal traction. Methods: An abdominal wall lifting (AWL) system and graded CO2pneumoperitoneum pressure was applied to four supine, anesthetized Guizhou miniature pigs and its effects on tracheal displacement (TD) and airflow dynamics of UA were studied. Individual run data in 3 min obtained before and after AWL and obtained before and after graded pneumoperitoneum pressure were analyzed. Differences between baseline and AWL/graded pneumoperitoneum pressure data of each pig were examined using a Student's t-test or analysis of variance. Results: Application of AWL resulted in decreased IAP and significant caudal TD. The average displacement amplitude was 0.44 mm (P < 0.001). There were three subjects showed increased tidal volume (TV) (P < 0.01) and peak inspiratory airflow (P < 0.01); however, the change of flow limitation inspiratory UA resistance (Rua) was not significant. Experimental increased IAP by pneumoperitoneum resulted in significant cranial TD. The average displacement amplitude was 1.07 mm (P < 0.001) when IAP was 25 cmH2O compared to baseline. There were three subjects showed reduced Rua while the TV increased (P < 0.01). There was one subject had decreased TV and elevated Rua (P < 0.001). Conclusions: Decreased IAP significantly increased caudal TD, and elevated IAP significantly increased cranial TD. However, the mechanism of UA collapsibility appears primarily mediated by changes in lung volume rather than tracheal traction effect. TV plays an independent role in the mechanism of UA collapsibility.

Details

Language :
English
ISSN :
03666999
Volume :
128
Issue :
23
Database :
Directory of Open Access Journals
Journal :
Chinese Medical Journal
Publication Type :
Academic Journal
Accession number :
edsdoj.8120d195a1a44cbb86e1e562b2dec911
Document Type :
article
Full Text :
https://doi.org/10.4103/0366-6999.170281