Back to Search Start Over

ALPINE: Active Link Prediction Using Network Embedding

Authors :
Xi Chen
Bo Kang
Jefrey Lijffijt
Tijl De Bie
Source :
Applied Sciences, Vol 11, Iss 11, p 5043 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

Many real-world problems can be formalized as predicting links in a partially observed network. Examples include Facebook friendship suggestions, the prediction of protein–protein interactions, and the identification of hidden relationships in a crime network. Several link prediction algorithms, notably those recently introduced using network embedding, are capable of doing this by just relying on the observed part of the network. Often, whether two nodes are linked can be queried, albeit at a substantial cost (e.g., by questionnaires, wet lab experiments, or undercover work). Such additional information can improve the link prediction accuracy, but owing to the cost, the queries must be made with due consideration. Thus, we argue that an active learning approach is of great potential interest and developed ALPINE (Active Link Prediction usIng Network Embedding), a framework that identifies the most useful link status by estimating the improvement in link prediction accuracy to be gained by querying it. We proposed several query strategies for use in combination with ALPINE, inspired by the optimal experimental design and active learning literature. Experimental results on real data not only showed that ALPINE was scalable and boosted link prediction accuracy with far fewer queries, but also shed light on the relative merits of the strategies, providing actionable guidance for practitioners.

Details

Language :
English
ISSN :
20763417
Volume :
11
Issue :
11
Database :
Directory of Open Access Journals
Journal :
Applied Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.803615b6e28247479c05a904bd755ddb
Document Type :
article
Full Text :
https://doi.org/10.3390/app11115043