Back to Search Start Over

Brain functional connectivity under teleoperation latency: a fNIRS study

Authors :
Yang Ye
Tianyu Zhou
Qi Zhu
William Vann
Jing Du
Source :
Frontiers in Neuroscience, Vol 18 (2024)
Publication Year :
2024
Publisher :
Frontiers Media S.A., 2024.

Abstract

IntroductionLong-distance robot teleoperation faces high latencies that pose cognitive challenges to human operators. Latency between command, execution, and feedback in teleoperation can impair performance and affect operators’ mental state. The neural underpinnings of these effects are not well understood.MethodsThis study aims to understand the cognitive impact of latency in teleoperation and the related mitigation methods, using functional Near-Infrared Spectroscopy (fNIRS) to analyze functional connectivity. A human subject experiment (n = 41) of a simulated remote robot manipulation task was performed. Three conditions were tested: no latency, with visual and haptic latency, with visual latency and no haptic latency. fNIRS and performance data were recorded and analyzed.ResultsThe presence of latency in teleoperation significantly increased functional connectivity within and between prefrontal and motor cortexes. Maintaining visual latency while providing real-time haptic feedback reduced the average functional connectivity in all cortical networks and showed a significantly different connectivity ratio within prefrontal and motor cortical networks. The performance results showed the worst performance in the all-delayed condition and best performance in no latency condition, which echoes the neural activity patterns.ConclusionThe study provides neurological evidence that latency in teleoperation increases cognitive load, anxiety, and challenges in motion planning and control. Real-time haptic feedback, however, positively influences neural pathways related to cognition, decision-making, and sensorimotor processes. This research can inform the design of ergonomic teleoperation systems that mitigate the effects of latency.

Details

Language :
English
ISSN :
1662453X
Volume :
18
Database :
Directory of Open Access Journals
Journal :
Frontiers in Neuroscience
Publication Type :
Academic Journal
Accession number :
edsdoj.8023230a4fe4bb87a047b77da892
Document Type :
article
Full Text :
https://doi.org/10.3389/fnins.2024.1416719