Back to Search Start Over

Stabilization of cyclohexanone monooxygenase by a computationally designed disulfide bond spanning only one residue

Authors :
Hugo L. van Beek
Hein J. Wijma
Lucie Fromont
Dick B. Janssen
Marco W. Fraaije
Source :
FEBS Open Bio, Vol 4, Iss C, Pp 168-174 (2014)
Publication Year :
2014
Publisher :
Wiley, 2014.

Abstract

Enzyme stability is an important parameter in biocatalytic applications, and there is a strong need for efficient methods to generate robust enzymes. We investigated whether stabilizing disulfide bonds can be computationally designed based on a model structure. In our approach, unlike in previous disulfide engineering studies, short bonds spanning only a few residues were included. We used cyclohexanone monooxygenase (CHMO), a Baeyer–Villiger monooxygenase (BVMO) from Acinetobacter sp. NCIMB9871 as the target enzyme. This enzyme has been the prototype BVMO for many biocatalytic studies even though it is notoriously labile. After creating a small library of mutant enzymes with introduced cysteine pairs and subsequent screening for improved thermostability, three stabilizing disulfide bonds were identified. The introduced disulfide bonds are all within 12 Å of each other, suggesting this particular region is critical for unfolding. This study shows that stabilizing disulfide bonds do not have to span many residues, as the most stabilizing disulfide bond, L323C–A325C, spans only one residue while it stabilizes the enzyme, as shown by a 6 °C increase in its apparent melting temperature.

Details

Language :
English
ISSN :
22115463
Volume :
4
Issue :
C
Database :
Directory of Open Access Journals
Journal :
FEBS Open Bio
Publication Type :
Academic Journal
Accession number :
edsdoj.8018133a895f4a30b8af3178e5625c4d
Document Type :
article
Full Text :
https://doi.org/10.1016/j.fob.2014.01.009