Back to Search Start Over

A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic- and molecular-phenotypes of epithelial ovarian cancer

Authors :
Haonan Lu
Mubarik Arshad
Andrew Thornton
Giacomo Avesani
Paula Cunnea
Ed Curry
Fahdi Kanavati
Jack Liang
Katherine Nixon
Sophie T. Williams
Mona Ali Hassan
David D. L. Bowtell
Hani Gabra
Christina Fotopoulou
Andrea Rockall
Eric O. Aboagye
Source :
Nature Communications, Vol 10, Iss 1, Pp 1-11 (2019)
Publication Year :
2019
Publisher :
Nature Portfolio, 2019.

Abstract

Radiomics—the quantification of features within tumor images—has shown prognostic potential in cancer. Here, the authors use a machine learning approach to develop a radiomic-based small set of descriptors to predict ovarian cancer patient survival based on CT scans acquired pre-operatively in 364 patients.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
10
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.7fff94167bb54d9d9ccc2351fa73055a
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-019-08718-9