Back to Search Start Over

Time-feature attention-based convolutional auto-encoder for flight feature extraction

Authors :
Qixin Wang
Kun Qin
Binbin Lu
Huabo Sun
Ping Shu
Source :
Scientific Reports, Vol 13, Iss 1, Pp 1-12 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract Quick Access Recorders (QARs) provide an important data source for Flight Operation Quality Assurance (FOQA) and flight safety. It is generally characterized by large volume, high-dimensionality and high frequency, and these features result in extreme complexities and uncertainties in its usage and comprehension. In this study, we proposed a Time-Feature Attention (TFA)-based Convolutional Auto-Encoder (TFA-CAE) network model to extract essential flight features from QAR data. As a case study, we used the QAR data landing at the Kunming Changshui International Airport and Lhasa Gonggar International Airport as the experimental data. The results show that (1) the TFA-CAE model performs the best in extracting representative flight features in comparison to some traditional or similar approaches, such as Principal Component Analysis (PCA), Convolutional Auto-Encoder (CAE), Self-Attention-based CAE (SA-CAE), Gate Recurrent Unit based Auto-Encoder (GRU-AE) and TFA-GRU-AE models; (2) flight patterns corresponding to different runways can be recognized; and (3) anomalous flights can effectively deviate from many observations. Overall, the TFA-CAE model provides a well-established technique for further usage of QAR data, such as flight risk detection or FOQA.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.7fc0616f7f4a41a38245f78d80588c1e
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-023-41295-y