Back to Search Start Over

Machine learning-based automatic estimation of cortical atrophy using brain computed tomography images

Authors :
Jae-Won Jang
Jeonghun Kim
Sang-Won Park
Payam Hosseinzadeh Kasani
Yeshin Kim
Seongheon Kim
Soo-Jong Kim
Duk L. Na
Seung Hwan Moon
Sang Won Seo
Joon-Kyung Seong
Source :
Scientific Reports, Vol 12, Iss 1, Pp 1-9 (2022)
Publication Year :
2022
Publisher :
Nature Portfolio, 2022.

Abstract

Abstract Cortical atrophy is measured clinically according to established visual rating scales based on magnetic resonance imaging (MRI). Although brain MRI is the primary imaging marker for neurodegeneration, computed tomography (CT) is also widely used for the early detection and diagnosis of dementia. However, they are seldom investigated. Therefore, we developed a machine learning algorithm for the automatic estimation of cortical atrophy on brain CT. Brain CT images (259 Alzheimer’s dementia and 55 cognitively normal subjects) were visually rated by three neurologists and used for training. We constructed an algorithm by combining the convolutional neural network and regularized logistic regression (RLR). Model performance was then compared with that of neurologists, and feature importance was measured. RLR provided fast and reliable automatic estimations of frontal atrophy (75.2% accuracy, 93.6% sensitivity, 67.2% specificity, and 0.87 area under the curve [AUC]), posterior atrophy (79.6% accuracy, 87.2% sensitivity, 75.9% specificity, and 0.88 AUC), right medial temporal atrophy (81.2% accuracy, 84.7% sensitivity, 79.6% specificity, and 0.88 AUC), and left medial temporal atrophy (77.7% accuracy, 91.1% sensitivity, 72.3% specificity, and 0.90 AUC). We concluded that RLR-based automatic estimation of brain CT provided a comprehensive rating of atrophy that can potentially support physicians in real clinical settings.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
12
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.7fa9a05c7a9842c2abd870071e8d42a3
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-022-18696-6