Back to Search Start Over

Rolling Element Bearing Fault Recognition Approach Based on Fuzzy Clustering Bispectrum Estimation

Authors :
W.Y. Liu
J.G. Han
Source :
Shock and Vibration, Vol 20, Iss 2, Pp 213-225 (2013)
Publication Year :
2013
Publisher :
Hindawi Limited, 2013.

Abstract

A rolling element bearing fault recognition approach is proposed in this paper. This method combines the basic Higher-order spectrum (HOS) theory and fuzzy clustering method in data mining area. In the first step, all the bispectrum estimation results of the training samples and test samples are turned into binary feature images. Secondly, the binary feature images of the training samples are used to construct object templates including kernel images and domain images. Every fault category has one object templates. At last, by calculating the distances between test samples' binary feature images and the different object templates, the object classification and pattern recognition can be effectively accomplished. Bearing is the most important and much easier to be damaged component in rotating machinery. Furthermore, there exist large amounts of noise jamming and nonlinear coupling components in bearing vibration signals. The Higher Order Cumulants (HOC), which can quantitatively describe the nonlinear characteristic signals with close relationship between the mechanical faults, is introduced in this paper to de-noise the raw bearing vibration signals and obtain the bispectrum estimation pictures. In the experimental part, the rolling bearing fault diagnosis experiment results proved that the classification was completely correct.

Subjects

Subjects :
Physics
QC1-999

Details

Language :
English
ISSN :
10709622 and 18759203
Volume :
20
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Shock and Vibration
Publication Type :
Academic Journal
Accession number :
edsdoj.7f7cf5de0ac46799cd6f3d4ba0889c4
Document Type :
article
Full Text :
https://doi.org/10.3233/SAV-2012-00739