Back to Search Start Over

Activation of FGFR2 Signaling Suppresses BRCA1 and Drives Triple‐Negative Mammary Tumorigenesis That is Sensitive to Immunotherapy

Authors :
Josh Haipeng Lei
Mi‐Hye Lee
Kai Miao
Zebin Huang
Zhicheng Yao
Aiping Zhang
Jun Xu
Ming Zhao
Zenan Huang
Xin Zhang
Si Chen
NG Jiaying
Yuzhao Feng
Fuqiang Xing
Ping Chen
Heng Sun
Qiang Chen
Tingxiu Xiang
Lin Chen
Xiaoling Xu
Chu‐Xia Deng
Source :
Advanced Science, Vol 8, Iss 21, Pp n/a-n/a (2021)
Publication Year :
2021
Publisher :
Wiley, 2021.

Abstract

Abstract Fibroblast growth factor receptor 2 (FGFR2) is a membrane‐spanning tyrosine kinase that mediates FGF signaling. Various FGFR2 alterations are detected in breast cancer, yet it remains unclear if activation of FGFR2 signaling initiates tumor formation. In an attempt to answer this question, a mouse model berrying an activation mutation of FGFR2 (FGFR2‐S252W) in the mammary gland is generated. It is found that FGF/FGFR2 signaling drives the development of triple‐negative breast cancer accompanied by epithelial‐mesenchymal transition that is regulated by FGFR2‐STAT3 signaling. It is demonstrated that FGFR2 suppresses BRCA1 via the ERK‐YY1 axis and promotes tumor progression. BRCA1 knockout in the mammary gland of the FGFR2‐S252W mice significantly accelerated tumorigenesis. It is also shown that FGFR2 positively regulates PD‐L1 and that a combination of FGFR2 inhibition and immune checkpoint blockade kills cancer cells. These data suggest that the mouse models mimic human breast cancers and can be used to identify actionable therapeutic targets.

Details

Language :
English
ISSN :
21983844
Volume :
8
Issue :
21
Database :
Directory of Open Access Journals
Journal :
Advanced Science
Publication Type :
Academic Journal
Accession number :
edsdoj.7f726409f9d74bee8fc6c68b19018205
Document Type :
article
Full Text :
https://doi.org/10.1002/advs.202100974