Back to Search Start Over

Novel Salinity-Tolerant Third-Generation Hybrid Rice Developed via CRISPR/Cas9-Mediated Gene Editing

Authors :
Xiabing Sheng
Zhiyong Ai
Yanning Tan
Yuanyi Hu
Xiayu Guo
Xiaolin Liu
Zhizhong Sun
Dong Yu
Jin Chen
Ning Tang
Meijuan Duan
Dingyang Yuan
Source :
International Journal of Molecular Sciences, Vol 24, Iss 9, p 8025 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Climate change has caused high salinity in many fields, particularly in the mud flats in coastal regions. The resulting salinity has become one of the most significant abiotic stresses affecting the world’s rice crop productivity. Developing elite cultivars with novel salinity-tolerance traits is regarded as the most cost-effective and environmentally friendly approach for utilizing saline-alkali land. To develop a highly efficient green strategy and create novel rice germplasms for salt-tolerant rice breeding, this study aimed to improve rice salinity tolerance by combining targeted CRISPR/Cas9-mediated editing of the OsRR22 gene with heterosis utilization. The novel alleles of the genic male-sterility (GMS) and elite restorer line (733Srr22-T1447-1 and HZrr22-T1349-3) produced 110 and 1 bp deletions at the third exon of OsRR22 and conferred a high level of salinity tolerance. Homozygous transgene-free progeny were identified via segregation in the T2 generation, with osrr22 showing similar agronomic performance to wild-type (733S and HZ). Furthermore, these two osrr22 lines were used to develop a new promising third-generation hybrid rice line with novel salinity tolerance. Overall, the results demonstrate that combining CRISPR/Cas9 targeted gene editing with the “third-generation hybrid rice system” approach allows for the efficient development of novel hybrid rice varieties that exhibit a high level of salinity tolerance, thereby ensuring improved cultivar stability and enhanced rice productivity.

Details

Language :
English
ISSN :
14220067 and 16616596
Volume :
24
Issue :
9
Database :
Directory of Open Access Journals
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.7f33bdffe1a146cdb7e93f10274f3a13
Document Type :
article
Full Text :
https://doi.org/10.3390/ijms24098025