Back to Search Start Over

Detection and characterization of traumatic bile leaks using Gd-EOB-DTPA enhanced magnetic resonance cholangiography

Authors :
Yon-Cheong Wong
Li-Jen Wang
Cheng-Hsien Wu
Huan-Wu Chen
Chen-Ju Fu
Kuo-Ching Yuan
Being-Chuan Lin
Yu-Pao Hsu
Shih-Ching Kang
Source :
Scientific Reports, Vol 8, Iss 1, Pp 1-9 (2018)
Publication Year :
2018
Publisher :
Nature Portfolio, 2018.

Abstract

Abstract Expanding bile leaks after blunt liver trauma require more aggressive treatment than contained bile leaks. In this retrospective study approved by institution review board, we analyzed if non-invasive contrast-enhanced magnetic resonance cholangiography (CEMRC) using hepatocyte-specific contrast agent (gadoxetic acid disodium) could detect and characterize traumatic bile leaks. Between March 2012 and December 2014, written informed consents from 22 included patients (17 men, 5 women) with a median age of 24.5 years (IQR 21.8, 36.0 years) were obtained. Biliary tree visualization and bile leak detection on CEMRC acquired at 10, 20, 30, 90 minutes time points were independently graded by three radiologists on a 5-point Likert scale. Intraclass Correlation (ICC) was computed as estimates of interrater reliability. Accuracy was measured by area under receiver operating characteristic curves (AUROC). Biliary tree visualization was the best on CEMRC at 90 minutes (score 4.30) with excellent inter-rater reliability (ICC = 0.930). Of 22 CEMRC, 15 had bile leak (8 expanding, 7 contained). The largest AUROC of bile leak detection by three radiologists were 0.824, 0.914, 0.929 respectively on CEMRC at 90 minutes with ICC of 0.816. In conclusion, bile leaks of blunt liver trauma can be accurately detected and characterized on CEMRC.

Details

Language :
English
ISSN :
20452322
Volume :
8
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.7f09400d77d243eaa3633f8a6976b1b6
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-018-32976-0