Back to Search
Start Over
On Selkow’s Bound on the Independence Number of Graphs
- Source :
- Discussiones Mathematicae Graph Theory, Vol 39, Iss 3, Pp 655-657 (2019)
- Publication Year :
- 2019
- Publisher :
- University of Zielona Góra, 2019.
-
Abstract
- For a graph G with vertex set V (G) and independence number α(G), Selkow [A Probabilistic lower bound on the independence number of graphs, Discrete Math. 132 (1994) 363–365] established the famous lower bound ∑v∈V(G)1d(v)+1(1+max{d(v)d(v)+1-∑u∈N(v)1d(u)+1,0})$\sum {_{v \in V(G)}{1 \over {d(v) + 1}}} \left( {1 + \max \left\{ {{{d(v)} \over {d(v) + 1}} - \sum {_{u \in N(v)}{1 \over {d(u) + 1}},0} } \right\}} \right)$ on α (G), where N(v) and d(v) = |N(v)| denote the neighborhood and the degree of a vertex v ∈ V (G), respectively. However, Selkow’s original proof of this result is incorrect. We give a new probabilistic proof of Selkow’s bound here.
- Subjects :
- graph
independence number
05c69
Mathematics
QA1-939
Subjects
Details
- Language :
- English
- ISSN :
- 20835892
- Volume :
- 39
- Issue :
- 3
- Database :
- Directory of Open Access Journals
- Journal :
- Discussiones Mathematicae Graph Theory
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.7ee43a23c82145d4bd3a55b5eea24ed9
- Document Type :
- article
- Full Text :
- https://doi.org/10.7151/dmgt.2100