Back to Search Start Over

Prediction of water flows in Colorado River, Argentina Predicción de caudales en río Colorado, Argentina

Authors :
Jorge O Pierini
Eduardo A Gómez
Luciano Telesca
Source :
Latin American Journal of Aquatic Research, Vol 40, Iss 4, Pp 872-880 (2012)
Publication Year :
2012
Publisher :
Escuela de Ciencias del Mar, Facultad de Recursos Naturales, Pontificia Universidad Católica de Valparaíso, 2012.

Abstract

The identification of suitable models for predicting daily water flow is important for planning and management of water storage in reservoirs of Argentina. Long-term prediction of water flow is crucial for regulating reservoirs and hydroelectric plants, for assessing environmental protection and sustainable development, for guaranteeing correct operation of public water supply in cities like Catriel, 25 de Mayo, Colorado River and potentially also Bahía Blanca. In this paper, we analyze in Buta Ranquil flow time series upstream reservoir and hydroelectric plant in order to model and predict daily fluctuations. We compare results obtained by using a three-layer artificial neural network (ANN), and an autoregressive (AR) model, using 18 years of data, of which the last 3 years are used for model validation by means of the root mean square error (RMSE), and measure of certainty (Skill). Our results point out to the better performance to predict daily water flow or refill them of the ANN model performance respect to the AR model.La identificación de modelos adecuados para predecir caudales diarios es importante para la planificación y la gestión de almacenamiento de agua en los embalses de la Argentina. La predicción a largo plazo del caudal es crucial para la regulación de los embalses y centrales hidroeléctricas, evaluar la protección del medio ambiente y el desarrollo sostenible, garantizar el correcto funcionamiento del abastecimiento público de agua en ciudades como Catriel, 25 de Mayo, río Colorado y también, eventualmente, en Bahía Blanca. En este trabajo, se analizan series de tiempo de caudales de agua, arriba del embalse y de la planta hidroeléctrica en Buta Ranquil, para modelar y predecir las fluctuaciones diarias. Se comparan los resultados obtenidos mediante el uso de una red neuronal artificial (ANN) de tres capas y un modelo autoregresivo (AR), con 18 anos de datos, cuyos últimos 3 anos se utilizan para la validación del modelo por medio de la raíz del error cuadrado medio (RMSE) y medida de certeza (Skill). Para predecir o rellenar el caudal diario, los resultados indican que el mejor desempeno es del ANN con respecto al modelo AR.

Details

Language :
English, Spanish; Castilian
ISSN :
0718560X
Volume :
40
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Latin American Journal of Aquatic Research
Publication Type :
Academic Journal
Accession number :
edsdoj.7eb5a28d3f5400ab6661f748c3ac65b
Document Type :
article