Back to Search Start Over

Design and Implementation of a Digital Front-End With Digital Compensation for Low-Complexity 4G Radio Transceivers

Authors :
Chester Sungchung Park
Yungyu Gim
Jeongpil Park
Sungkyung Park
Source :
IEEE Access, Vol 9, Pp 111432-111455 (2021)
Publication Year :
2021
Publisher :
IEEE, 2021.

Abstract

A digital front-end with digital compensation is designed and implemented for low-complexity 4G radio transceivers targeted for wearable devices such as smart watches. The proposed digital front-end in the radio receiver consists of an anti-drooping filter, a decimation chain, a DC offset cancellation circuit, and an in-phase and quadrature estimation and compensation circuit whereas the digital front-end in the radio transmitter includes an anti-drooping filter, a root raised cosine filter, and an interpolation chain. The proposed DC offset cancellation circuit is based on both infinite-duration impulse response filter and moving average. The proposed in-phase and quadrature estimation and compensation circuit attains lower complexity with negligible performance loss, compared with an existing circuit. A systematic top-down strategy is taken to design and implement the proposed digital front-end from the algorithm level to the application-specific integrated circuit or ASIC hardware level. The inter-symbol interference in the transmitter and the receiver is analyzed and the unwanted emission in the transmitter is simulated as well. For all the seven bandwidths or modes in 3G and 4G, the digital front end receiver ASIC satisfies all the interference requirements, namely, in-band blocker, narrowband blocker, and adjacent channel selectivity requirements whereas the digital front end transmitter ASIC meets all the unwanted emission requirements, namely, spectrum emission mask, spurious emission, and adjacent channel leakage ratio requirements. The proposed multimode 4G digital front end receiver and transmitter ASICs exhibit a >40dB mean signal-to-noise ratio for all the seven modes and are implemented in a 180nm CMOS process technology.

Details

Language :
English
ISSN :
21693536
Volume :
9
Database :
Directory of Open Access Journals
Journal :
IEEE Access
Publication Type :
Academic Journal
Accession number :
edsdoj.7e86ff4f8b4fe59dca2115d0d2fbe5
Document Type :
article
Full Text :
https://doi.org/10.1109/ACCESS.2021.3102949