Back to Search Start Over

Detecting Anomalous Transactions via an IoT Based Application: A Machine Learning Approach for Horse Racing Betting

Authors :
Moohong Min
Jemin Justin Lee
Hyunbeom Park
Kyungho Lee
Source :
Sensors, Vol 21, Iss 6, p 2039 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

During the past decade, the technological advancement have allowed the gambling industry worldwide to deploy various platforms such as the web and mobile applications. Government agencies and local authorities have placed strict regulations regarding the location and amount allowed for gambling. These efforts are made to prevent gambling addictions and monitor fraudulent activities. The revenue earned from gambling provides a considerable amount of tax revenue. The inception of internet gambling have allowed professional gamblers to par take in unlawful acts. However, the lack of studies on the technical inspections and systems to prohibit unlawful internet gambling has caused incidents such as the Walkerhill Hotel incident in 2016, where fraudsters placed bets abnormally by modifying an Internet of Things (IoT)-based application called “MyCard”. This paper investigates the logic used by smartphone IoT applications to validate the location of users and then confirm continuous threats. Hence, our research analyzed transactions made on applications that operated using location authentication through IoT devices. Drawing on gambling transaction data from the Korea Racing Authority, this research used time series machine learning algorithms to identify anomalous activities and transactions. In our research, we propose a method to detect and prevent these anomalies by conducting a comparative analysis of the results of existing anomaly detection techniques and novel techniques.

Details

Language :
English
ISSN :
14248220
Volume :
21
Issue :
6
Database :
Directory of Open Access Journals
Journal :
Sensors
Publication Type :
Academic Journal
Accession number :
edsdoj.7e76898233e4c0ba6eee15c7f6a9da9
Document Type :
article
Full Text :
https://doi.org/10.3390/s21062039