Back to Search
Start Over
Optimization, purification and characterization of laccase from a new endophytic Trichoderma harzianum AUMC14897 isolated from Opuntia ficus-indica and its applications in dye decolorization and wastewater treatment
- Source :
- Microbial Cell Factories, Vol 23, Iss 1, Pp 1-19 (2024)
- Publication Year :
- 2024
- Publisher :
- BMC, 2024.
-
Abstract
- Abstract Background Hazardous synthetic dye wastes have become a growing threat to the environment and public health. Fungal enzymes are eco-friendly, compatible and cost-effective approach for diversity of applications. Therefore, this study aimed to screen, optimize fermentation conditions, and characterize laccase from fungal endophyte with elucidating its ability to decolorize several wastewater dyes. Results A new fungal endophyte capable of laccase-producing was firstly isolated from cladodes of Opuntia ficus-indica and identified as T. harzianum AUMC14897 using ITS-rRNA sequencing analysis. Furthermore, the response surface methodology (RSM) was utilized to optimize several fermentation parameters that increase laccase production. The isolated laccase was purified to 13.79-fold. GFC, SDS-PAGE revealed laccase molecular weight at 72 kDa and zymogram analysis elucidated a single band without any isozymes. The peak activity of the pure laccase was detected at 50 °C, pH 4.5, with thermal stability up to 50 °C and half life span for 4 h even after 24 h retained 30% of its activity. The Km and Vmax values were 0.1 mM, 22.22 µmol/min and activation energy (Ea) equal to 5.71 kcal/mol. Furthermore, the purified laccase effectively decolorized various synthetic and real wastewater dyes. Conclusion Subsequently, the new endophytic strain produces high laccase activity that possesses a unique characteristic, it could be an appealing candidate for both environmental and industrial applications.
Details
- Language :
- English
- ISSN :
- 14752859
- Volume :
- 23
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Microbial Cell Factories
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.7e1d1906f3eb40ebb745cbae10e835c4
- Document Type :
- article
- Full Text :
- https://doi.org/10.1186/s12934-024-02530-x