Back to Search Start Over

Reprogramming of VEGF-mediated extracellular matrix changes through autocrine signaling

Authors :
Eibhlin Goggins
Yelena Mironchik
Samata Kakkad
Desmond Jacob
Flonne Wildes
Zaver M. Bhujwalla
Balaji Krishnamachary
Source :
Cancer Biology & Therapy, Vol 24, Iss 1 (2023)
Publication Year :
2023
Publisher :
Taylor & Francis Group, 2023.

Abstract

Vascular endothelial growth factor (VEGF) plays key roles in angiogenesis, vasculogenesis, and wound healing. In cancers, including triple negative breast cancer (TNBC), VEGF has been associated with increased invasion and metastasis, processes that require cancer cells to traverse through the extracellular matrix (ECM) and establish angiogenesis at distant sites. To further understand the role of VEGF in modifying the ECM, we characterized VEGF-mediated changes in the ECM of tumors derived from TNBC MDA-MB-231 cells engineered to overexpress VEGF. We established that increased VEGF expression by these cells resulted in tumors with reduced collagen 1 (Col1) fibers, fibronectin, and hyaluronan. Molecular characterization of tumors identified an increase of MMP1, uPAR, and LOX, and a decrease of MMP2, and ADAMTS1. α-SMA, a marker of cancer associated fibroblasts (CAFs), increased, and FAP-α, a marker of a subset of CAFs associated with immune suppression, decreased with VEGF overexpression. Analysis of human data from The Cancer Genome Atlas Program confirmed mRNA differences for several molecules when comparing TNBC with high and low VEGF expression. We additionally characterized enzymatic changes induced by VEGF overexpression in three different cancer cell lines that clearly identified autocrine-mediated changes, specifically uPAR, in these enzymes. Unlike the increase of Col1 fibers and fibronectin mediated by VEGF during wound healing, in the TNBC model, VEGF significantly reduced key protein components of the ECM. These results further expand our understanding of the role of VEGF in cancer progression and identify potential ECM-related targets to disrupt this progression.

Details

Language :
English
ISSN :
15384047 and 15558576
Volume :
24
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Cancer Biology & Therapy
Publication Type :
Academic Journal
Accession number :
edsdoj.7de7ef596dd74256b90ba25f74b60c12
Document Type :
article
Full Text :
https://doi.org/10.1080/15384047.2023.2184145