Back to Search Start Over

Progenitor Renin Lineage Cells are not involved in the regeneration of glomerular endothelial cells during experimental renal thrombotic microangiopathy.

Authors :
Leo Ruhnke
Jan Sradnick
Moath Al-Mekhlafi
Michael Gerlach
Florian Gembardt
Bernd Hohenstein
Vladimir T Todorov
Christian Hugo
Source :
PLoS ONE, Vol 13, Iss 5, p e0196752 (2018)
Publication Year :
2018
Publisher :
Public Library of Science (PLoS), 2018.

Abstract

Endothelial cells (EC) frequently undergo primary or secondary injury during kidney disease such as thrombotic microangiopathy or glomerulonephritis. Renin Lineage Cells (RLCs) serve as a progenitor cell niche after glomerular damage in the adult kidney. However, it is not clear whether RLCs also contribute to endothelial replenishment in the glomerulus following endothelial injury. Therefore, we investigated the role of RLCs as a potential progenitor niche for glomerular endothelial regeneration. We used an inducible tet-on triple-transgenic reporter strain mRen-rtTAm2/LC1/LacZ to pulse-label the renin-producing RLCs in adult mice. Unilateral kidney EC damage (EC model) was induced by renal artery perfusion with concanavalin/anti-concanavalin. In this model glomerular EC injury and depletion developed within 1 day while regeneration occurred after 7 days. LacZ-labelled RLCs were restricted to the juxtaglomerular compartment of the afferent arterioles at baseline conditions. In contrast, during the regenerative phase of the EC model (day 7) a subset of LacZ-tagged RLCs migrated to the glomerular tuft. Intraglomerular RLCs did not express renin anymore and did not stain for glomerular endothelial or podocyte cell markers, but for the mesangial cell markers α8-integrin and PDGFRβ. Accordingly, we found pronounced mesangial cell damage parallel to the endothelial injury induced by the EC model. These results demonstrated that in our EC model RLCs are not involved in endothelial regeneration. Rather, recruitment of RLCs seems to be specific for the repair of the concomitantly damaged mesangium.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
13
Issue :
5
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.7ddfff5908f843c89cdeb08f21b35fb2
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0196752