Back to Search
Start Over
Identification of Urban Ventilation Corridor System Using Meteorology and GIS Technology: A Case Study in Zhengzhou, China
- Source :
- Atmosphere, Vol 15, Iss 9, p 1034 (2024)
- Publication Year :
- 2024
- Publisher :
- MDPI AG, 2024.
-
Abstract
- Urban ventilation corridors are designed to enhance air quality, alleviate urban thermal conditions, reduce pollution and energy consumption, as well as improve human comfort within cities. They play a pivotal role in mitigating environmental impacts, particularly in densely populated urban areas. Based on satellite remote sensing data, meteorological observations, basic geographic information of Zhengzhou City and its surroundings, and urban planning data, we analyzed the urban wind environment, urban heat island, ecological cold sources, and ventilation potential. The findings reveal several key insights: (1) Dominant winds in Zhengzhou City predominantly originate from the northwest, northeast, and south, influenced by topography and the monsoon climate, with seasonal variations. These wind patterns are crucial considerations for designing primary ventilation corridors. (2) The urban heat island exhibits a polycentric spatial distribution, with intensity decreasing from the city center towards the periphery. Ecological cold sources, primarily situated in the city outskirts, act as reservoirs of fresh air that mitigate the urban heat island effect through designated corridors. (3) A preliminary corridor system, termed “eight primary and thirteen secondary corridors”, is proposed for Zhengzhou City based on an integrated assessment of ventilation potential, urban surface roughness, and sky view factor. This research contributes to advancing the understanding of urban ventilation systems and provides practical insights for policymakers, urban planners, and researchers seeking sustainable solutions to mitigate climate impacts in rapidly urbanizing environments in the region.
Details
- Language :
- English
- ISSN :
- 20734433
- Volume :
- 15
- Issue :
- 9
- Database :
- Directory of Open Access Journals
- Journal :
- Atmosphere
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.7dd6ba1fe314392997074d29456fba3
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/atmos15091034