Back to Search Start Over

EfficientMelody Extraction Based on an Extreme Learning Machine

Authors :
Weiwei Zhang
Qiaoling Zhang
Sheng Bi
Shaojun Fang
Jinliang Dai
Source :
Applied Sciences, Vol 10, Iss 7, p 2213 (2020)
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

Melody extraction is an important task in music information retrieval community and it is unresolved due to the complex nature of real-world recordings. In this paper, the melody extraction problem is addressed in the extreme learning machine (ELM) framework. More specifically, the input musical signal is first pre-processed to mimic the human auditory system. The music features are then constructed by constant-Q transform (CQT), and the concentration strategy is introduced to make use of contextual information. Afterwards, the rough melody pitches are determined by ELM network, according to its pre-trained parameters. Finally, the rough melody pitches are fine-tuned by the spectral peaks around the frame-wise rough pitches. The proposed method can extract melody from polyphonic music efficiently and effectively, where pitch estimation and voicing detection are conducted jointly. Some experiments have been conducted based on three publicly available datasets. The experimental results reveal that the proposed method achieves higher overall accuracies with very fast speed.

Details

Language :
English
ISSN :
20763417
Volume :
10
Issue :
7
Database :
Directory of Open Access Journals
Journal :
Applied Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.7dc7f1bab5014e0795b21c3b1686ec0a
Document Type :
article
Full Text :
https://doi.org/10.3390/app10072213