Back to Search Start Over

A robotic arm control system with simultaneous and sequential modes combining eye-tracking with steady-state visual evoked potential in virtual reality environment

Authors :
Rongxiao Guo
Yanfei Lin
Xi Luo
Xiaorong Gao
Shangen Zhang
Source :
Frontiers in Neurorobotics, Vol 17 (2023)
Publication Year :
2023
Publisher :
Frontiers Media S.A., 2023.

Abstract

At present, single-modal brain-computer interface (BCI) still has limitations in practical application, such as low flexibility, poor autonomy, and easy fatigue for subjects. This study developed an asynchronous robotic arm control system based on steady-state visual evoked potentials (SSVEP) and eye-tracking in virtual reality (VR) environment, including simultaneous and sequential modes. For simultaneous mode, target classification was realized by decision-level fusion of electroencephalography (EEG) and eye-gaze. The stimulus duration for each subject was non-fixed, which was determined by an adjustable window method. Subjects could autonomously control the start and stop of the system using triple blink and eye closure, respectively. For sequential mode, no calibration was conducted before operation. First, subjects’ gaze area was obtained through eye-gaze, and then only few stimulus blocks began to flicker. Next, target classification was determined using EEG. Additionally, subjects could reject false triggering commands using eye closure. In this study, the system effectiveness was verified through offline experiment and online robotic-arm grasping experiment. Twenty subjects participated in offline experiment. For simultaneous mode, average ACC and ITR at the stimulus duration of 0.9 s were 90.50% and 60.02 bits/min, respectively. For sequential mode, average ACC and ITR at the stimulus duration of 1.4 s were 90.47% and 45.38 bits/min, respectively. Fifteen subjects successfully completed the online tasks of grabbing balls in both modes, and most subjects preferred the sequential mode. The proposed hybrid brain-computer interface (h-BCI) system could increase autonomy, reduce visual fatigue, meet individual needs, and improve the efficiency of the system.

Details

Language :
English
ISSN :
16625218
Volume :
17
Database :
Directory of Open Access Journals
Journal :
Frontiers in Neurorobotics
Publication Type :
Academic Journal
Accession number :
edsdoj.7db92b3169d142b2aed07852de767ea5
Document Type :
article
Full Text :
https://doi.org/10.3389/fnbot.2023.1146415