Back to Search Start Over

Artificial intelligence-based mining of electronic health record data to accelerate the digital transformation of the national cardiovascular ecosystem: design protocol of the CardioMining study

Authors :
Konstantinos Tsioufis
Despoina Ntiloudi
George Giannakoulas
George Lazaros
Constantinos Bakogiannis
George Kassimis
Anastasios Kartas
Panos E Vardas
Dimitrios Farmakis
Periklis Davlouros
Maria Ioannou
George Kochiadakis
Athanasios Samaras
Antonios Ziakas
Theoni Theodoropoulou
Dimitrios V Moysidis
John Skoularigis
Andreas S Papazoglou
Alexandra Bekiaridou
Grigorios Tsoumakas
Panagiotis Bamidis
Grigorios Tsigkas
Nikolaos Fragakis
Vassilios Vassilikos
Ioannis Zarifis
Dimitrios N Tziakas
Athanasios Feidakis
Vasiliki Patsiou
Eirinaios Tsiartas
Antonios Orfanidis
Triantafyllia Grantza
Chrysanthi Ioanna Lampropoulou
Dimitrios Kostakakis
Olga Kazarli
Maria Eirini Kiriakideli
Melina Kyriakou
Dimitra Kontopyrgou
Martha Zergioti
Eleftherios Gemousakakis
Amalia Baroutidou
Alexios Vagianos
Alexandros Liatsos
Konstantinos Barmpagiannos
George Tyrikos
George Konstantinou
Anthi Vasilopoulou
Marina Spaho
Eleni Manthou
Panagiotis Zymaris
Eleni Baliafa
Maria Baloka
Iasonas Dermitzakis
Vasiliki Anagnostopoulou
Chrysi Solovou
Anna Maria Louka
Aliki Iliadou
Ioanna Filimidou
Aspasia Kyriafini
Odysseas Kamzolas
Ioannis Vouloagkas
Despoina Nteli
Nikolaos Outountzidis
Athanasia Vathi
Anastasia Foka
Michael Botis
Anastasia Christodoulou
George Vogiatzis
Eleni Vrana
Maria Nteli
Stefanos Antοniadis
Foteini Charisi
Mairifylli Vamvaka
Dimitrios Triantis
Efi Delilampou
Vaggelis Axarloglou
Georgios Charistos
George Anagnostou
Sofia Christodoulou
Anastasios Papanastasiou
Eleni Tziona
Nikolaos Batis
Katerina Gakidi
Artemis Iosifidou
Andreanna Moura
Christos Alexandropoulos
Theoni Exintaveloni
Asterios Karakoutas
Damianos Porfyropoulos
Michail Bountas
Athanasios Pachoumis
Eleftherios Markidis
Maria Sitmalidou
Athanasia Pappa
Konstantinos C Theodoropoulos
George Rampidis
Apostolos Tzikas
Stylianos Paraskevaidis
Georgios Efthimiadis
Theofilatos Athinagoras
Christoforos Travlos
Nikolaos Vythoulkas-Biotis
Kassiani Maria Nastouli
Nikolaos Kartas
Angeliki Vakka
Maria Bozika
Virginia Anagnostopoulou
Georgios Tsioulos
Emilia Lazarou
Panagiotis Tsioufis
Ioannis Kachrimanidis
Nick Argyriou
Emmanouil Kampanieris
Alexandros Patrianakos
Ioannis Kanakakis
Marios Vasileios Koutroulos
Georgios K Chalikias
Sophia Alexiou
Athena Nasoufidou
Panagiotis Stachteas
Tsantikos Christos
Grigorios Giamouzis
Ioannis Alexanian
Ioannis Styliadis
George Fotos
Nikolaos Bourboulis
Evangelos Pisimisis
Antonis Billis
Ilias Kyparissidis
Dimitrios Tsalikakis
Jens-Michael Papaioannou
Alexander Löser
Source :
BMJ Open, Vol 13, Iss 4 (2023)
Publication Year :
2023
Publisher :
BMJ Publishing Group, 2023.

Abstract

Introduction Mining of electronic health record (EHRs) data is increasingly being implemented all over the world but mainly focuses on structured data. The capabilities of artificial intelligence (AI) could reverse the underusage of unstructured EHR data and enhance the quality of medical research and clinical care. This study aims to develop an AI-based model to transform unstructured EHR data into an organised, interpretable dataset and form a national dataset of cardiac patients.Methods and analysis CardioMining is a retrospective, multicentre study based on large, longitudinal data obtained from unstructured EHRs of the largest tertiary hospitals in Greece. Demographics, hospital administrative data, medical history, medications, laboratory examinations, imaging reports, therapeutic interventions, in-hospital management and postdischarge instructions will be collected, coupled with structured prognostic data from the National Institute of Health. The target number of included patients is 100 000. Natural language processing techniques will facilitate data mining from the unstructured EHRs. The accuracy of the automated model will be compared with the manual data extraction by study investigators. Machine learning tools will provide data analytics. CardioMining aims to cultivate the digital transformation of the national cardiovascular system and fill the gap in medical recording and big data analysis using validated AI techniques.Ethics and dissemination This study will be conducted in keeping with the International Conference on Harmonisation Good Clinical Practice guidelines, the Declaration of Helsinki, the Data Protection Code of the European Data Protection Authority and the European General Data Protection Regulation. The Research Ethics Committee of the Aristotle University of Thessaloniki and Scientific and Ethics Council of the AHEPA University Hospital have approved this study. Study findings will be disseminated through peer-reviewed medical journals and international conferences. International collaborations with other cardiovascular registries will be attempted.Trial registration number NCT05176769.

Subjects

Subjects :
Medicine

Details

Language :
English
ISSN :
20446055
Volume :
13
Issue :
4
Database :
Directory of Open Access Journals
Journal :
BMJ Open
Publication Type :
Academic Journal
Accession number :
edsdoj.7d975a30893b4c9eb09d38d1fc4cfba7
Document Type :
article
Full Text :
https://doi.org/10.1136/bmjopen-2022-068698