Back to Search
Start Over
Regulatory mechanisms involved in blunting protein synthesis in working skeletal muscle
- Source :
- Journal of Physical Fitness and Sports Medicine, Vol 1, Iss 1, Pp 163-165 (2012)
- Publication Year :
- 2012
- Publisher :
- Japanese Society of Physical Fitness and Sports Medicine, 2012.
-
Abstract
- Protein synthesis is suppressed in working skeletal muscle. Teleologically, the skeletal muscle halts an ATP-consuming anabolic process such as protein synthesis to spare ATP for contractile activity during an emergency. So far, 2 mechanisms have been proposed for halting protein synthesis in working muscle. One of these mechanisms suggests that AMPK inhibits mTORC1, which is arguably a master regulator of the initiation step in protein translation. Another theory suggests Ca2+-dependent inactivation of eukaryotic elongation factor 2 (eEF2), which regulates the elongation step in protein translation. Previous reports in the literature suggest that factors other than AMPK and/or eEF2 are involved in the suppression of protein synthesis. We have recently shown that REDD1 might also be involved in blunting protein synthesis in working muscle. Understanding these mechanisms might lead to the development of new strategies and treatments, not only for athletes but also for individuals with muscle-wasting conditions such as sarcopenia.
- Subjects :
- muscle protein synthesis
ampk
eef2
redd1
Sports medicine
RC1200-1245
Physiology
QP1-981
Subjects
Details
- Language :
- English
- ISSN :
- 21868131 and 21868123
- Volume :
- 1
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Journal of Physical Fitness and Sports Medicine
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.7d8e0fdb94854d6793ee74f32e9d6cef
- Document Type :
- article
- Full Text :
- https://doi.org/10.7600/jpfsm.1.163