Back to Search Start Over

A High-Performance and Low HCI Degradation LDMOS Device With a Hybrid Field Plate

Authors :
Shaoxin Yu
Rongsheng Chen
Weiheng Shao
Weiming Yu
Xiaoyan Zhao
Zheng Chen
Weizhong Shan
Jenhao Cheng
Source :
IEEE Journal of the Electron Devices Society, Vol 12, Pp 605-612 (2024)
Publication Year :
2024
Publisher :
IEEE, 2024.

Abstract

In this paper, a high-performance and low-HCI (Hot carrier injection) degradation LDMOS (Lateral double diffused metal oxide semiconductor) device is introduced. It consists of an additional mini LOCOS (Local oxidation of silicon) field plate combined with a mini STI (Shallow trench isolation) field plate without an additional complex fabrication process. A series of devices have been fabricated, and the field plate corner profile is optimized. The proposed hybrid FP(Field plate) can effectively reduce the electric field peak, and the BV (Breakdown voltage) achieves as high as 78.9V while the ${R}_{{on}{,}{sp}}$ (Specific on-resistance) is as low as $69.1~{{\mathrm { m}}\Omega \cdot }{mm}^{2}$ , which is 65.8% improved compared with conventional transistors. Meanwhile, the hybrid FP device owns much better HCI (Hot carrier injection) degradation performance on ${R}_{on,sp}$ , threshold voltage ${V}_{T}$ , and gate-drain capacitance ${C}_{GD}$ . The degradation of ${R}_{{on}{,}{sp}}$ is only 8.6% under ${I}_{d}$ mode stress while it is as high as 15.8% for the conventional devices. At on-state, ${C}_{GD}$ degradation is only 9.1% while it is nearly 59.9% in the traditional device. At high voltage application regions, the device exhibits nearly 0% ${C}_{GD}$ degradation while it is as high as 43.8% in the traditional device. The results indicate the device’s robustness in both DC (Direct current) applications and RF (Radio frequency) applications.

Details

Language :
English
ISSN :
21686734
Volume :
12
Database :
Directory of Open Access Journals
Journal :
IEEE Journal of the Electron Devices Society
Publication Type :
Academic Journal
Accession number :
edsdoj.7d458f0e03243b2bc0ac24cfd9d64e1
Document Type :
article
Full Text :
https://doi.org/10.1109/JEDS.2024.3433442