Back to Search Start Over

Carbon price prediction based on decomposition technique and extreme gradient boosting optimized by the grey wolf optimizer algorithm

Authors :
Mengdan Feng
Yonghui Duan
Xiang Wang
Jingyi Zhang
Lanlan Ma
Source :
Scientific Reports, Vol 13, Iss 1, Pp 1-23 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract It is essential to predict carbon prices precisely in order to reduce CO2 emissions and mitigate global warming. As a solution to the limitations of a single machine learning model that has insufficient forecasting capability in the carbon price prediction problem, a carbon price prediction model (GWO–XGBOOST–CEEMDAN) based on the combination of grey wolf optimizer (GWO), extreme gradient boosting (XGBOOST), and complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is put forward in this paper. First, a random forest (RF) method is employed to screen the primary carbon price indicators and determine the main influencing factors. Second, the GWO–XGBOOST model is established, and the GWO algorithm is utilized to optimize the XGBOOST model parameters. Finally, the residual series of the GWO–XGBOOST model are decomposed and corrected using the CEEMDAN method to produce the GWO–XGBOOST–CEEMDAN model. Three carbon emission trading markets, Guangdong, Hubei, and Fujian, were experimentally predicted to verify the model’s validity. Based on the experimental results, it has been demonstrated that the proposed hybrid model has enhanced prediction precision compared to the comparison model, providing an effective experimental method for the prediction of future carbon prices.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.7cffd4c8eb6a4ae8b0769771021e9a98
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-023-45524-2