Back to Search Start Over

The Synthesis Method of Logic Circuits Based on the NMOS-Like RRAM Gates

Authors :
Xiaole Cui
Ye Ma
Feng Wei
Xiaoxin Cui
Source :
IEEE Access, Vol 9, Pp 54466-54477 (2021)
Publication Year :
2021
Publisher :
IEEE, 2021.

Abstract

The synthesis method of logic circuits based on the RRAM (Resistive Random Access Memory) devices is of great concern in recent years. Inspired by the CMOS-like RRAM based logic gates, this work proposes a NMOS-like RRAM gate family. The advantages of the proposed NMOS-like RRAM gates include: (1) all the gate circuits are array-implementable; (2) the gate family is logic complete; (3) the NOR, AND and NOT gates only consume single cycle respectively in the computation phase; (4) the gate circuits save half number of RRAM devices compared with the CMOS-like RRAM based counterparts. Furthermore, the synthesis method of logic circuits based on the NMOS-like RRAM gates is proposed and discussed. The single-cycle NMOS-like RRAM gates are utilized in priority under the constraints of the logic block. The features of the proposed synthesis method are: (1) it generates the high-performance logic circuits because the NMOS-like RRAM based gates work in parallel; (2) the logic block based on the proposed NMOS-like gates can be realized in the RRAM array; (3) the large-scale logic functions can be implemented by cascading the logic blocks. The in-array full-adder circuit generated by the proposed synthesis method only consumes three cycles in minimum, which outperforms the previous RRAM based counterpart. The synthesis results on the benchmark circuits show that the proposed synthesis method is able to generate the high-performance circuit in RRAM arrays for arbitrary logic functions.

Details

Language :
English
ISSN :
21693536
Volume :
9
Database :
Directory of Open Access Journals
Journal :
IEEE Access
Publication Type :
Academic Journal
Accession number :
edsdoj.7c8df042dd8a41b5b93d6494a7a2e9aa
Document Type :
article
Full Text :
https://doi.org/10.1109/ACCESS.2020.2967080