Back to Search Start Over

Improvement of pharmacokinetic and antitumor activity of layered double hydroxide nanoparticles by coating with PEGylated phospholipid membrane

Authors :
Yan MN
Zhang ZG
Cui SM
Lei M
Zeng K
Liao YH
Chu WJ
Deng YH
Zhao CS
Source :
International Journal of Nanomedicine, Vol 2014, Iss Issue 1, Pp 4867-4878 (2014)
Publication Year :
2014
Publisher :
Dove Medical Press, 2014.

Abstract

Mina Yan,1,2 Zhaoguo Zhang,2 Shengmiao Cui,3 Ming Lei,2 Ke Zeng,2 Yunhui Liao,2 Weijing Chu,2 Yihui Deng,1 Chunshun Zhao2 1School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People’s Republic of China; 2School of Pharmaceutical Sciences, Sun Yat-sen University, 3Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China Abstract: Layered double hydroxide (LDH) has attracted considerable attention as a drug carrier. However, because of its poor in vivo behavior, polyethylene glycolylated (PEGylated) phospholipid must be used as a coformer to produce self-assembled core–shell nanoparticles. In the present study, we prepared a PEGylated phospholipid-coated LDH (PLDH) (PEG-PLDH) delivery system. The PEG-PLDH nanoparticles had an average size of 133.2 nm. Their core–shell structure was confirmed by transmission electron microscopy and X-ray photoelectron spectroscopy. In vitro liposome-cell-association and cytotoxicity experiments demonstrated its ability to be internalized by cells. In vivo studies showed that PEGylated phospholipid membranes greatly reduced the blood clearance rate of LDH nanoparticles. PEG-PLDH nanoparticles demonstrated a good control of tumor growth and increased the survival rate of mice. These results suggest that PEG-PLDH nanoparticles can be a useful drug delivery system for cancer therapy. Keywords: lipid membrane, positive charge, delivery system, cancer therapy

Subjects

Subjects :
Medicine (General)
R5-920

Details

Language :
English
ISSN :
11782013
Volume :
2014
Issue :
Issue 1
Database :
Directory of Open Access Journals
Journal :
International Journal of Nanomedicine
Publication Type :
Academic Journal
Accession number :
edsdoj.7c8d036245f24bd8bd6d89aebe09e734
Document Type :
article