Back to Search
Start Over
Generating synthetic contrast enhancement from non-contrast chest computed tomography using a generative adversarial network
- Source :
- Scientific Reports, Vol 11, Iss 1, Pp 1-10 (2021)
- Publication Year :
- 2021
- Publisher :
- Nature Portfolio, 2021.
-
Abstract
- Abstract This study aimed to evaluate a deep learning model for generating synthetic contrast-enhanced CT (sCECT) from non-contrast chest CT (NCCT). A deep learning model was applied to generate sCECT from NCCT. We collected three separate data sets, the development set (n = 25) for model training and tuning, test set 1 (n = 25) for technical evaluation, and test set 2 (n = 12) for clinical utility evaluation. In test set 1, image similarity metrics were calculated. In test set 2, the lesion contrast-to-noise ratio of the mediastinal lymph nodes was measured, and an observer study was conducted to compare lesion conspicuity. Comparisons were performed using the paired t-test or Wilcoxon signed-rank test. In test set 1, sCECT showed a lower mean absolute error (41.72 vs 48.74; P
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 11
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Scientific Reports
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.7c727c67454e49b220a07d5e0a5e9a
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41598-021-00058-3