Back to Search Start Over

Fibrin-konjac glucomannan-black phosphorus hydrogel scaffolds loaded with nasal ectodermal mesenchymal stem cells accelerated alveolar bone regeneration

Authors :
Yin Zou
Xue Mei
Xinhe Wang
Xuan Zhang
Xun Wang
Wen Xiang
Naiyan Lu
Source :
BMC Oral Health, Vol 24, Iss 1, Pp 1-15 (2024)
Publication Year :
2024
Publisher :
BMC, 2024.

Abstract

Abstract Background Effective treatments for the alveolar bone defect remain a major concern in dental therapy. The objectives of this study were to develop a fibrin and konjac glucomannan (KGM) composite hydrogel as scaffolds for the osteogenesis of nasal mucosa-derived ectodermal mesenchymal stem cells (EMSCs) for the regeneration of alveolar bone defect, and to investigate the osteogenesis-accelerating effects of black phosphorus nanoparticles (BPNs) embedded in the hydrogels. Methods Primary EMSCs were isolated from rat nasal mucosa and used for the alveolar bone recovery. Fibrin and KGM were prepared in different ratios for osteomimetic hydrogel scaffolds, and the optimal ratio was determined by mechanical properties and biocompatibility analysis. Then, the optimal hydrogels were integrated with BPNs to obtain BPNs/fibrin-KGM hydrogels, and the effects on osteogenic EMSCs in vitro were evaluated. To explore the osteogenesis-enhancing effects of hydrogels in vivo, the BPNs/fibrin-KGM scaffolds combined with EMSCs were implanted to a rat model of alveolar bone defect. Micro-computed tomography (CT), histological examination, real-time quantitative polymerase chain reaction (RT-qPCR) and western blot were conducted to evaluate the bone morphology and expression of osteogenesis-related genes of the bone regeneration. Results The addition of KGM improved the mechanical properties and biodegradation characteristics of the fibrin hydrogels. In vitro, the BPNs-containing compound hydrogel was proved to be biocompatible and capable of enhancing the osteogenesis of EMSCs by upregulating the mineralization and the activity of alkaline phosphatase. In vivo, the micro-CT analysis and histological evaluation demonstrated that rats implanted EMSCs-BPNs/fibrin-KGM hydrogels exhibited the best bone reconstruction. And compared to the model group, the expression of osteogenesis genes including osteopontin (Opn, p

Details

Language :
English
ISSN :
14726831
Volume :
24
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Oral Health
Publication Type :
Academic Journal
Accession number :
edsdoj.7c5ac90362c146b4afc2dc5959cc5a2f
Document Type :
article
Full Text :
https://doi.org/10.1186/s12903-024-04649-0