Back to Search
Start Over
Cell Cycle Status Influences Resistance to Apoptosis Induced by Oxidative Stress in Human Breast Cancer Cells, Which Is Accompanied by Modulation of Autophagy
- Source :
- Current Issues in Molecular Biology, Vol 45, Iss 8, Pp 6325-6338 (2023)
- Publication Year :
- 2023
- Publisher :
- MDPI AG, 2023.
-
Abstract
- Cancer cells are characterised by uncontrolled cell proliferation; however, some of them can temporarily arrest their cell cycle at the G0 or G1 phase, which could contribute to tumour heterogeneity and drug resistance. The cell cycle status plays a critical role in chemosensitivity; however, the influence of G0- and G1-arrest has not been elucidated. To study the cell cycle arrest-mediated resistance, we used MCF-7 cells and generated three populations of cells: (1) cells arrested in the G0-like phase, (2) cells that resumed the cell cycle after the G0-like phase and (3) cells arrested in early G1 with a history of G0-like arrest. We observed that both the G0-like- and the G1-arrested cells acquired resistance to apoptosis induced by oxidative stress, accompanied by a decreased intracellular reactive oxygen species and DNA damage. This effect was associated with increased autophagy, likely facilitating their survival at DNA damage insult. The cell cycle reinitiation restored a sensitivity to oxidative stress typical for cells with a non-modulated cell cycle, with a concomitant decrease in autophagy. Our results support the need for further research on the resistance of G0- and G1-arrested cancer cells to DNA-damaging agents and present autophagy as a candidate for targeting in anticancer treatment.
Details
- Language :
- English
- ISSN :
- 45080399, 14673045, and 14673037
- Volume :
- 45
- Issue :
- 8
- Database :
- Directory of Open Access Journals
- Journal :
- Current Issues in Molecular Biology
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.7c4f0111984f6cac651bb5517acab0
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/cimb45080399