Back to Search Start Over

Hybrid Random Forest-Based Models for Earth Pressure Balance Tunneling-Induced Ground Settlement Prediction

Authors :
Peixi Yang
Weixun Yong
Chuanqi Li
Kang Peng
Wei Wei
Yingui Qiu
Jian Zhou
Source :
Applied Sciences, Vol 13, Iss 4, p 2574 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Construction-induced ground settlement is a serious hazard in underground tunnel construction. Accurate ground settlement prediction has great significance in ensuring the surface building’s stability and human safety. To that end, 148 sets of data were collected from the Singapore Circle Line rail traffic project containing seven defining parameters to create a database for predicting ground settlement. These parameters are the tunnel depth (H), the tunnel advance rate (AR), the EPB earth pressure (EP), the mean SPTN value from the soil crown to the surface (Sm), the mean water content of the soil layer (MC), the mean modulus of elasticity of the soil layer (E), and the grout pressure used for injecting grout into the tail void (GP). Three hybrid models consisting of random forest (RF) and three types of meta-heuristics, Ant Lion Optimizier (ALO), Multi-Verse Optimizer (MVO), and Grasshopper Optimization Algorithm (GOA), were developed to predict ground settlement. Furthermore, the mean absolute error (MAE), the mean absolute percentage error (MAPE), the coefficient of determination (R2) and the root mean square error (RMSE) were used to assess predictive performance of the constructed models for predicting ground settlement. The evaluation results demonstrated that the GOA-RF with a population size of 10 has achieved the most outstanding predictive capability with the indices of MAE (Training set: 2.8224; Test set: 2.3507), MAPE (Training set: 40.5629; Test set: 38.5637), R2 (Training set: 0.9487; Test set: 0.9282), and RMSE (Training set: 4.93; Test set: 3.1576). Finally, the sensitivity analysis results indicated that MC, AR, Sm, and GP have a significant impact on ground settlement prediction based on the GOA-RF model.

Details

Language :
English
ISSN :
20763417
Volume :
13
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Applied Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.7c35fdae527a49e79010b4f5af46140c
Document Type :
article
Full Text :
https://doi.org/10.3390/app13042574