Back to Search Start Over

Multi-Targets: An Unconventional Drug Development Strategy for Alzheimer’s Disease

Authors :
Cheng-Xin Gong
Chun-Ling Dai
Fei Liu
Khalid Iqbal
Source :
Frontiers in Aging Neuroscience, Vol 14 (2022)
Publication Year :
2022
Publisher :
Frontiers Media S.A., 2022.

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that eventually leads to dementia and death of the patient. Despite the enormous amounts of resources and efforts for AD drug development during the last three decades, no effective treatments have been developed that can slow or halt the progression of the disease. Currently available drugs for treating AD can only improve clinical symptoms temporarily with moderate efficacies. In recent years, the scientific community has realized these challenges and reconsidered the future directions of AD drug development. The most significant recent changes in AD drug development strategy include shifting from amyloid-based targets to other targets, such as tau, and efforts toward better designs for clinical trials. However, most AD drug development is still focused on a single mechanism or target, which is the conventional strategy for drug development. Although multifactorial mechanisms and, on this basis, multi-target strategies have been proposed in recent years, this approach has not been widely recognized and accepted by the mainstream of AD drug development. Here, we emphasize the multifactorial mechanisms of AD and discuss the urgent need for a paradigm shift in AD drug development from a single target to multiple targets, either with the multi-target–directed ligands approach or the combination therapy approach. We hope this article will increase the recognition of the multifactorial nature of AD and promote this paradigm shift. We believe that such a shift will facilitate successful development of effective AD therapies.

Details

Language :
English
ISSN :
16634365
Volume :
14
Database :
Directory of Open Access Journals
Journal :
Frontiers in Aging Neuroscience
Publication Type :
Academic Journal
Accession number :
edsdoj.7bd227b6cb844c0e8aea70ea454eb6c2
Document Type :
article
Full Text :
https://doi.org/10.3389/fnagi.2022.837649