Back to Search Start Over

Advanced Hyperspectral Image Analysis: Superpixelwise Multiscale Adaptive T-HOSVD for 3D Feature Extraction

Authors :
Qiansen Dai
Chencong Ma
Qizhong Zhang
Source :
Sensors, Vol 24, Iss 13, p 4072 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Hyperspectral images (HSIs) possess an inherent three-order structure, prompting increased interest in extracting 3D features. Tensor analysis and low-rank representations, notably truncated higher-order SVD (T-HOSVD), have gained prominence for this purpose. However, determining the optimal order and addressing sensitivity to changes in data distribution remain challenging. To tackle these issues, this paper introduces an unsupervised Superpixelwise Multiscale Adaptive T-HOSVD (SmaT-HOSVD) method. Leveraging superpixel segmentation, the algorithm identifies homogeneous regions, facilitating the extraction of local features to enhance spatial contextual information within the image. Subsequently, T-HOSVD is adaptively applied to the obtained superpixel blocks for feature extraction and fusion across different scales. SmaT-HOSVD harnesses superpixel blocks and low-rank representations to extract 3D features, effectively capturing both spectral and spatial information of HSIs. By integrating optimal-rank estimation and multiscale fusion strategies, it acquires more comprehensive low-rank information and mitigates sensitivity to data variations. Notably, when trained on subsets comprising 2%, 1%, and 1% of the Indian Pines, University of Pavia, and Salinas datasets, respectively, SmaT-HOSVD achieves impressive overall accuracies of 93.31%, 97.21%, and 99.25%, while maintaining excellent efficiency. Future research will explore SmaT-HOSVD’s applicability in deep-sea HSI classification and pursue additional avenues for advancing the field.

Details

Language :
English
ISSN :
14248220
Volume :
24
Issue :
13
Database :
Directory of Open Access Journals
Journal :
Sensors
Publication Type :
Academic Journal
Accession number :
edsdoj.7b9f5d27bfd342cc8f43384f70b3f2dc
Document Type :
article
Full Text :
https://doi.org/10.3390/s24134072