Back to Search Start Over

Polycaprolactone-Li6PS5Cl composite polymer electrolytes for stable room temperature all-solid-state lithium batteries

Authors :
Hui Tang
Mengyuan Zhu
Jia Wang
Tinghu Liu
Hao He
Shaojie Chen
Xiayin Yao
Source :
Next Materials, Vol 4, Iss , Pp 100173- (2024)
Publication Year :
2024
Publisher :
Elsevier, 2024.

Abstract

Incorporating inorganic fillers into solid polymer electrolytes (SPEs) to construct composite polymer electrolytes (CPEs) serves as an effective strategy to comprehensively enhance the properties of solid electrolytes. Herein, a CPE is fabricated by integrating Li6PS5Cl particles into polycaprolactone (PCL). The addition of active fillers could effectively weaken the crystallization of polymer and increase the ionic conductivity of the solid electrolyte. In particular, the PCL-based polymer electrolyte with 3% Li6PS5Cl (PCL-3) exhibits an excellent ionic conductivity of 1.36×10−4 S cm−1 at room temperature, which is one order higher than that of PCL polymer solid electrolyte. And it achieves a high critical current density of 2.2 mA cm−2 with a capacity of 2.2 mAh cm−2. The assembled Li symmetric battery can cycle steadily for more than 3000 h at 0.5 mA cm−2 under room temperature. The LiFePO4/PCL-3/Li all-solid-state battery maintains a capacity of 125.3 mAh g−1 after 400 cycles at 0.2 C under room temperature. Notably, the LiFePO4//Li battery also shows stable cycling at 40 °C, exhibiting high reversible specific capacities of 156.7 mAh g−1 and 126.3 mAh g−1 with a retention rate of 97.15% and 94.6% at 0.2 C and 0.5 C after 100 cycles, respectively, showing promising application prospects for all-solid-state lithium metal batteries.

Details

Language :
English
ISSN :
29498228
Volume :
4
Issue :
100173-
Database :
Directory of Open Access Journals
Journal :
Next Materials
Publication Type :
Academic Journal
Accession number :
edsdoj.7b61161fcc22409b9ed4f90bbfbc9bee
Document Type :
article
Full Text :
https://doi.org/10.1016/j.nxmate.2024.100173