Back to Search Start Over

Enhancing Salt Stress Tolerance in Rye with ZnO Nanoparticles: Detecting H2O2 as a Stress Biomarker by Nanostructured NiO Electrochemical Sensor

Authors :
Vjaceslavs Gerbreders
Marina Krasovska
Eriks Sledevskis
Irena Mihailova
Valdis Mizers
Jans Keviss
Andrejs Bulanovs
Source :
Crystals, Vol 14, Iss 5, p 423 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

This article is devoted to the study of the effect of ZnO nanoparticles on the development of tolerance to salt stress in rye samples. As a quantitative criterion for assessing the degree of oxidative stress, the amount of H2O2 released in the samples during growth was determined. For these purposes, an electrochemical sensor based on hydrothermally synthesized wall-shaped NiO nanostructures was developed. This sensor has been proven to demonstrate high sensitivity (2474 µA·mM−1), a low limit of detection (1.59 µM), good selectivity against common interferents, and excellent long-term stability. The investigation reveals that the incorporation of ZnO nanoparticles in irrigation water notably enhances rye’s ability to combat salt stress, resulting in a decrease in detected H2O2 levels (up to 70%), coupled with beneficial effects on morphological traits and photosynthetic rates.

Details

Language :
English
ISSN :
20734352
Volume :
14
Issue :
5
Database :
Directory of Open Access Journals
Journal :
Crystals
Publication Type :
Academic Journal
Accession number :
edsdoj.7b523ebf119b42df8be03c9583d362e9
Document Type :
article
Full Text :
https://doi.org/10.3390/cryst14050423