Back to Search Start Over

Effects of focused ultrasound in a 'clean' mouse model of ultrasonic neuromodulation

Authors :
Hongsun Guo
Hossein Salahshoor
Di Wu
Sangjin Yoo
Tomokazu Sato
Doris Y. Tsao
Mikhail G. Shapiro
Source :
iScience, Vol 26, Iss 12, Pp 108372- (2023)
Publication Year :
2023
Publisher :
Elsevier, 2023.

Abstract

Summary: Recent studies on ultrasonic neuromodulation (UNM) in rodents have shown that focused ultrasound (FUS) can activate peripheral auditory pathways, leading to off-target and brain-wide excitation, which obscures the direct activation of the target area by FUS. To address this issue, we developed a new mouse model, the double transgenic Pou4f3+/DTR × Thy1-GCaMP6s, which allows for inducible deafening using diphtheria toxin and minimizes off-target effects of UNM while allowing effects on neural activity to be visualized with fluorescent calcium imaging. Using this model, we found that the auditory confounds caused by FUS can be significantly reduced or eliminated within a certain pressure range. At higher pressures, FUS can result in focal fluorescence dips at the target, elicit non-auditory sensory confounds, and damage tissue, leading to spreading depolarization. Under the acoustic conditions we tested, we did not observe direct calcium responses in the mouse cortex. Our findings provide a cleaner animal model for UNM and sonogenetics research, establish a parameter range within which off-target effects are confidently avoided, and reveal the non-auditory side effects of higher-pressure stimulation.

Details

Language :
English
ISSN :
25890042
Volume :
26
Issue :
12
Database :
Directory of Open Access Journals
Journal :
iScience
Publication Type :
Academic Journal
Accession number :
edsdoj.7acd72fee08146cb876a3e8a52896092
Document Type :
article
Full Text :
https://doi.org/10.1016/j.isci.2023.108372