Back to Search Start Over

Complex Formation of Phytic Acid With Selected Monovalent and Divalent Metals

Authors :
Gregor Marolt
Ema Gričar
Boris Pihlar
Mitja Kolar
Source :
Frontiers in Chemistry, Vol 8 (2020)
Publication Year :
2020
Publisher :
Frontiers Media S.A., 2020.

Abstract

The formation of metal complexes with phytic acid is a complex process that depends strongly on the metal-to-ligand molar ratio, pH value and consequent protonation level of the phytate ligand as well as accompanying side reactions, in particular metal hydrolysis and precipitation of the formed coordination compounds. In the present work, the potentiometric titration technique was used in combination with a detailed analysis of the equivalent point dependencies for selected biologically relevant monovalent and divalent cations from the groups of alkaline earths and transition metals, namely: Mg(II), Zn(II), Fe(II), Cu(I), and Cu(II) ions. The investigation of complex formation mechanism, the evaluation of the species formed, and the identification of other side reactions was based on the examination of three distinct equivalent points, which were detectable by alkalimetric titrations of phytic acid in the presence of selected metal ions. It has been demonstrated that alkaline earth metals interact with different binding site(s) than the transition metals, and experiments with both oxidation states of copper revealed similar complexing characteristics, which depend mainly on the ionic radius (and not on the ionic charge as initially expected). Quantitative data on phytate complexation, hydroxide formation and complex precipitation are presented herein for all metals studied, including Cu(I), which was investigated for the first time by means of alkalimetric titration.

Details

Language :
English
ISSN :
22962646
Volume :
8
Database :
Directory of Open Access Journals
Journal :
Frontiers in Chemistry
Publication Type :
Academic Journal
Accession number :
edsdoj.7ac57d0bb5524740a2db9654a2f324aa
Document Type :
article
Full Text :
https://doi.org/10.3389/fchem.2020.582746