Back to Search
Start Over
On spectral radius and Nordhaus-Gaddum type inequalities of the generalized distance matrix of graphs
- Source :
- Karpatsʹkì Matematičnì Publìkacìï, Vol 14, Iss 1, Pp 185-193 (2022)
- Publication Year :
- 2022
- Publisher :
- Vasyl Stefanyk Precarpathian National University, 2022.
-
Abstract
- If $Tr(G)$ and $D(G)$ are respectively the diagonal matrix of vertex transmission degrees and distance matrix of a connected graph $G$, the generalized distance matrix $D_{\alpha}(G)$ is defined as $D_{\alpha}(G)=\alpha ~Tr(G)+(1-\alpha)~D(G)$, where $0\leq \alpha \leq 1$. If $\rho_1 \geq \rho_2 \geq \dots \geq \rho_n$ are the eigenvalues of $D_{\alpha}(G)$, the largest eigenvalue $\rho_1$ (or $\rho_{\alpha}(G)$) is called the spectral radius of the generalized distance matrix $D_{\alpha}(G)$. The generalized distance energy is defined as $E^{D_{\alpha}}(G)=\sum_{i=1}^{n}\left|\rho_i -\frac{2\alpha W(G)}{n}\right|$, where $W(G)$ is the Wiener index of $G$. In this paper, we obtain the bounds for the spectral radius $\rho_{\alpha}(G)$ and the generalized distance energy of $G$ involving Wiener index. We derive the Nordhaus-Gaddum type inequalities for the spectral radius and the generalized distance energy of $G$.
Details
- Language :
- English, Ukrainian
- ISSN :
- 20759827 and 23130210
- Volume :
- 14
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Karpatsʹkì Matematičnì Publìkacìï
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.7ac0dddddfac4d2d864bf05ac96ffab4
- Document Type :
- article
- Full Text :
- https://doi.org/10.15330/cmp.14.1.185-193