Back to Search Start Over

On spectral radius and Nordhaus-Gaddum type inequalities of the generalized distance matrix of graphs

Authors :
M. Merajuddin
S. Bhatnagar
S. Pirzada
Source :
Karpatsʹkì Matematičnì Publìkacìï, Vol 14, Iss 1, Pp 185-193 (2022)
Publication Year :
2022
Publisher :
Vasyl Stefanyk Precarpathian National University, 2022.

Abstract

If $Tr(G)$ and $D(G)$ are respectively the diagonal matrix of vertex transmission degrees and distance matrix of a connected graph $G$, the generalized distance matrix $D_{\alpha}(G)$ is defined as $D_{\alpha}(G)=\alpha ~Tr(G)+(1-\alpha)~D(G)$, where $0\leq \alpha \leq 1$. If $\rho_1 \geq \rho_2 \geq \dots \geq \rho_n$ are the eigenvalues of $D_{\alpha}(G)$, the largest eigenvalue $\rho_1$ (or $\rho_{\alpha}(G)$) is called the spectral radius of the generalized distance matrix $D_{\alpha}(G)$. The generalized distance energy is defined as $E^{D_{\alpha}}(G)=\sum_{i=1}^{n}\left|\rho_i -\frac{2\alpha W(G)}{n}\right|$, where $W(G)$ is the Wiener index of $G$. In this paper, we obtain the bounds for the spectral radius $\rho_{\alpha}(G)$ and the generalized distance energy of $G$ involving Wiener index. We derive the Nordhaus-Gaddum type inequalities for the spectral radius and the generalized distance energy of $G$.

Details

Language :
English, Ukrainian
ISSN :
20759827 and 23130210
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Karpatsʹkì Matematičnì Publìkacìï
Publication Type :
Academic Journal
Accession number :
edsdoj.7ac0dddddfac4d2d864bf05ac96ffab4
Document Type :
article
Full Text :
https://doi.org/10.15330/cmp.14.1.185-193