Back to Search
Start Over
Neural circuitry coordinating male copulation
- Source :
- eLife, Vol 5 (2016)
- Publication Year :
- 2016
- Publisher :
- eLife Sciences Publications Ltd, 2016.
-
Abstract
- Copulation is the goal of the courtship process, crucial to reproductive success and evolutionary fitness. Identifying the circuitry underlying copulation is a necessary step towards understanding universal principles of circuit operation, and how circuit elements are recruited into the production of ordered action sequences. Here, we identify key sex-specific neurons that mediate copulation in Drosophila, and define a sexually dimorphic motor circuit in the male abdominal ganglion that mediates the action sequence of initiating and terminating copulation. This sexually dimorphic circuit composed of three neuronal classes – motor neurons, interneurons and mechanosensory neurons – controls the mechanics of copulation. By correlating the connectivity, function and activity of these neurons we have determined the logic for how this circuitry is coordinated to generate this male-specific behavior, and sets the stage for a circuit-level dissection of active sensing and modulation of copulatory behavior.
Details
- Language :
- English
- ISSN :
- 2050084X
- Volume :
- 5
- Database :
- Directory of Open Access Journals
- Journal :
- eLife
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.7aab1b120ecf4da089948cc9354f7f83
- Document Type :
- article
- Full Text :
- https://doi.org/10.7554/eLife.20713