Back to Search Start Over

Feature Guided CNN for Baby’s Facial Expression Recognition

Authors :
Qing Lin
Ruili He
Peihe Jiang
Source :
Complexity, Vol 2020 (2020)
Publication Year :
2020
Publisher :
Hindawi-Wiley, 2020.

Abstract

State-of-the-art facial expression methods outperform human beings, especially, thanks to the success of convolutional neural networks (CNNs). However, most of the existing works focus mainly on analyzing an adult’s face and ignore the important problems: how can we recognize facial expression from a baby’s face image and how difficult is it? In this paper, we first introduce a new face image database, named BabyExp, which contains 12,000 images from babies younger than two years old, and each image is with one of three facial expressions (i.e., happy, sad, and normal). To the best of our knowledge, the proposed dataset is the first baby face dataset for analyzing a baby’s face image, which is complementary to the existing adult face datasets and can shed some light on exploring baby face analysis. We also propose a feature guided CNN method with a new loss function, called distance loss, to optimize interclass distance. In order to facilitate further research, we provide the benchmark of expression recognition on the BabyExp dataset. Experimental results show that the proposed network achieves the recognition accuracy of 87.90% on BabyExp.

Details

Language :
English
ISSN :
10762787 and 10990526
Volume :
2020
Database :
Directory of Open Access Journals
Journal :
Complexity
Publication Type :
Academic Journal
Accession number :
edsdoj.7a899d3a29c34062bc7b865c0aef029a
Document Type :
article
Full Text :
https://doi.org/10.1155/2020/8855885