Back to Search
Start Over
Discovery of higher-order topological insulators using the spin Hall conductivity as a topology signature
- Source :
- npj Computational Materials, Vol 7, Iss 1, Pp 1-6 (2021)
- Publication Year :
- 2021
- Publisher :
- Nature Portfolio, 2021.
-
Abstract
- Abstract The discovery and realization of topological insulators, a phase of matter which hosts metallic boundary states when the d-dimension insulating bulk is confined to (d − 1)-dimensions, led to several potential applications. Recently, it was shown that protected topological states can manifest in (d − 2)-dimensions, such as hinge and corner states for three- and two-dimensional systems, respectively. These nontrivial materials are named higher-order topological insulators (HOTIs). Here we show a connection between spin Hall effect and HOTIs using a combination of ab initio calculations and tight-binding modeling. The model demonstrates how a non-zero bulk midgap spin Hall conductivity (SHC) emerges within the HOTI phase. Following this, we performed high-throughput density functional theory calculations to find unknown HOTIs, using the SHC as a criterion. We calculated the SHC of 693 insulators resulting in seven stable two-dimensional HOTIs. Our work guides novel experimental and theoretical advances towards higher-order topological insulator realization and applications.
Details
- Language :
- English
- ISSN :
- 20573960
- Volume :
- 7
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- npj Computational Materials
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.7a84d9a32840431da8ec67dca2bc47ea
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41524-021-00518-4