Back to Search Start Over

The inference of gray whale (Eschrichtius robustus) historical population attributes from whole-genome sequences

Authors :
Anna Brüniche-Olsen
Rick Westerman
Zuzanna Kazmierczyk
Vladimir V. Vertyankin
Celine Godard-Codding
John W. Bickham
J. Andrew DeWoody
Source :
BMC Evolutionary Biology, Vol 18, Iss 1, Pp 1-12 (2018)
Publication Year :
2018
Publisher :
BMC, 2018.

Abstract

Abstract Background Commercial whaling caused extensive demographic declines in many great whale species, including gray whales that were extirpated from the Atlantic Ocean and dramatically reduced in the Pacific Ocean. The Eastern Pacific gray whale has recovered since the 1982 ban on commercial whaling, but the Western Pacific gray whale—once considered possibly extinct—consists of only about 200 individuals and is considered critically endangered by some international authorities. Herein, we use whole-genome sequencing to investigate the demographic history of gray whales from the Pacific and use environmental niche modelling to make predictions about future gene flow. Results Our sequencing efforts and habitat niche modelling indicate that: i) western gray whale effective population sizes have declined since the last glacial maximum; ii) contemporary gray whale genomes, both eastern and western, harbor less autosomal nucleotide diversity than most other marine mammals and megafauna; iii) the extent of inbreeding, as measured by autozygosity, is greater in the Western Pacific than in the Eastern Pacific populations; and iv) future climate change is expected to open new migratory routes for gray whales. Conclusion Our results indicate that gray whale genomes contain low nucleotide diversity and have been subject to both historical and recent inbreeding. Population sizes over the last million years likely peaked about 25,000 years before present and have declined since then. Our niche modelling suggests that novel migratory routes may develop within the next century and if so this could help retain overall genetic diversity, which is essential for adaption and successful recovery in light of global environmental change and past exploitation.

Details

Language :
English
ISSN :
14712148
Volume :
18
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Evolutionary Biology
Publication Type :
Academic Journal
Accession number :
edsdoj.7a70cc647cb448cdad8019c29581d2ec
Document Type :
article
Full Text :
https://doi.org/10.1186/s12862-018-1204-3