Back to Search Start Over

Long-wave infrared photothermoelectric detectors with ultrahigh polarization sensitivity

Authors :
Mingjin Dai
Chongwu Wang
Bo Qiang
Yuhao Jin
Ming Ye
Fakun Wang
Fangyuan Sun
Xuran Zhang
Yu Luo
Qi Jie Wang
Source :
Nature Communications, Vol 14, Iss 1, Pp 1-11 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract Filter-free miniaturized polarization-sensitive photodetectors have important applications in the next-generation on-chip polarimeters. However, their polarization sensitivity is thus far limited by the intrinsic low diattenuation and inefficient photon-to-electron conversion. Here, we implement experimentally a miniaturized detector based on one-dimensional tellurium nanoribbon, which can significantly improve the photothermoelectric responses by translating the polarization-sensitive absorption into a large temperature gradient together with the finite-size effect of a perfect plasmonic absorber. Our devices exhibit a zero-bias responsivity of 410 V/W and an ultrahigh polarization ratio (2.5 × 104), as well as a peak polarization angle sensitivity of 7.10 V/W•degree, which is one order of magnitude higher than those reported in the literature. Full linear polarimetry detection is also achieved with the proposed device in a simple geometrical configuration. Polarization-coded communication and optical strain measurement are demonstrated showing the great potential of the proposed devices. Our work presents a feasible solution for miniaturized room-temperature infrared photodetectors with ultrahigh polarization sensitivity.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.7a598576cf7d4141b1286cf8554e105d
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-023-39071-7