Back to Search
Start Over
Establishing brain states in neuroimaging data.
- Source :
- PLoS Computational Biology, Vol 19, Iss 10, p e1011571 (2023)
- Publication Year :
- 2023
- Publisher :
- Public Library of Science (PLoS), 2023.
-
Abstract
- The definition of a brain state remains elusive, with varying interpretations across different sub-fields of neuroscience-from the level of wakefulness in anaesthesia, to activity of individual neurons, voltage in EEG, and blood flow in fMRI. This lack of consensus presents a significant challenge to the development of accurate models of neural dynamics. However, at the foundation of dynamical systems theory lies a definition of what constitutes the 'state' of a system-i.e., a specification of the system's future. Here, we propose to adopt this definition to establish brain states in neuroimaging timeseries by applying Dynamic Causal Modelling (DCM) to low-dimensional embedding of resting and task condition fMRI data. We find that ~90% of subjects in resting conditions are better described by first-order models, whereas ~55% of subjects in task conditions are better described by second-order models. Our work calls into question the status quo of using first-order equations almost exclusively within computational neuroscience and provides a new way of establishing brain states, as well as their associated phase space representations, in neuroimaging datasets.
- Subjects :
- Biology (General)
QH301-705.5
Subjects
Details
- Language :
- English
- ISSN :
- 1553734X and 15537358
- Volume :
- 19
- Issue :
- 10
- Database :
- Directory of Open Access Journals
- Journal :
- PLoS Computational Biology
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.7a4c66c9906245b28c8106baf8707baa
- Document Type :
- article
- Full Text :
- https://doi.org/10.1371/journal.pcbi.1011571&type=printable