Back to Search
Start Over
Better Inversion of Wheat Canopy SPAD Values before Heading Stage Using Spectral and Texture Indices Based on UAV Multispectral Imagery
- Source :
- Remote Sensing, Vol 15, Iss 20, p 4935 (2023)
- Publication Year :
- 2023
- Publisher :
- MDPI AG, 2023.
-
Abstract
- In China’s second-largest wheat-producing region, the mid-lower Yangtze River area, cold stress impacts winter wheat production during the pre-heading growth stage. Previous research focused on specific growth stages, lacking a comprehensive approach. This study utilizes Unmanned Aerial Vehicle (UAV) multispectral imagery to monitor Soil-Plant Analysis Development (SPAD) values throughout the pre-heading stage, assessing crop stress resilience. Vegetation Indices (VIs) and Texture Indices (TIs) are extracted from UAV imagery. Recursive Feature Elimination (RFE) is applied to VIs, TIs, and fused variables (VIs + TIs), and six machine learning algorithms are employed for SPAD value estimation. The fused VIs and TIs model, based on Long Short-Term Memory (LSTM), achieves the highest accuracy (R2 = 0.8576, RMSE = 2.9352, RRMSE = 0.0644, RPD = 2.6677), demonstrating robust generalization across wheat varieties and nitrogen management practices. This research aids in mitigating winter wheat frost risks and increasing yields.
Details
- Language :
- English
- ISSN :
- 20724292
- Volume :
- 15
- Issue :
- 20
- Database :
- Directory of Open Access Journals
- Journal :
- Remote Sensing
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.7a4a63f4740238a8f7e5279428f55
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/rs15204935