Back to Search Start Over

Creating Custom Neural Circuits on Multiple Electrode Arrays Utilizing Optical Tweezers for Precise Nerve Cell Placement

Authors :
Frank H. Kung
Ellen Townes-Anderson
Source :
Methods and Protocols, Vol 3, Iss 2, p 44 (2020)
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

Precise creation, maintenance, and monitoring of neuronal circuits would facilitate the investigation of subjects such as neuronal development or synaptic plasticity, or assist in the development of neuronal prosthetics. Here we present a method to precisely control the placement of multiple types of neuronal retinal cells onto a commercially available multiple electrode array (MEA), using custom-built optical tweezers. We prepared the MEAs by coating a portion of the MEA with a non-adhesive substrate (Poly (2-hydroxyethyl methacrylate)), and the electrodes with an adhesive cell growth substrate. We then dissociated the retina of adult tiger salamanders, plated them onto prepared MEAs, and utilized the optical tweezers to create retinal circuitry mimicking in vivo connections. In our hands, the optical tweezers moved ~75% of photoreceptors, bipolar cells, and multipolar cells, an average of ~2000 micrometers, at a speed of ~16 micrometers/second. These retinal circuits were maintained in vitro for seven days. We confirmed electrophysiological activity by stimulating the photoreceptors with the MEA and measuring their response with calcium imaging. In conclusion, we have developed a method of utilizing optical tweezers in conjunction with MEAs that allows for the design and maintenance of custom neural circuits for functional analysis.

Details

Language :
English
ISSN :
24099279
Volume :
3
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Methods and Protocols
Publication Type :
Academic Journal
Accession number :
edsdoj.7a28c1117cdd40fea6559eaf20e6cd5f
Document Type :
article
Full Text :
https://doi.org/10.3390/mps3020044