Back to Search Start Over

Case report: A novel mutation of glial fibrillary acidic protein gene causing juvenile-onset Alexander disease

Authors :
Carmela Romano
Emanuele Morena
Simona Petrucci
Selene Diamant
Martina Marconi
Lorena Travaglini
Ginevra Zanni
Maria Piane
Marco Salvetti
Silvia Romano
Giovanni Ristori
Source :
Frontiers in Neurology, Vol 15 (2024)
Publication Year :
2024
Publisher :
Frontiers Media S.A., 2024.

Abstract

Alexander disease (AxD) is a rare inherited autosomal dominant (AD) disease with different clinical phenotypes according to the age of onset. It is caused by mutations in the glial fibrillary acid protein (GFAP) gene, which causes GFAP accumulation in astrocytes. A wide spectrum of mutations has been described. For some variants, genotype–phenotype correlations have been described, although variable expressivity has also been reported in late-onset cases among members of the same family. We present the case of a 19-year-old girl who developed gait ataxia and subtle involuntary movements, preceded by a history of enuresis and severe scoliosis. Her mother has been affected by ataxia since her childhood, which was then complicated by pyramidal signs and heavily worsened through the years. Beyond her mother, no other known relatives suffered from neurologic syndromes. The scenario was further complicated by a complex brain and spinal cord magnetic resonance imaging (MRI) pattern in both mother and daughter. However, the similar clinical phenotype made an inherited cause highly probable. Both AD and autosomal recessive (AR) ataxic syndromes were considered, lacking a part of the proband’s pedigree, but no causative genetic alterations were found. Considering the strong suspicion for an inherited condition, we performed clinical exome sequencing (CES), which analyzes more than 4,500 genes associated with diseases. CES evidenced the new heterozygous missense variant c.260 T > A in exon 1 of the glial fibrillary acidic protein (GFAP) gene (NM_002055.4), which causes the valine to aspartate amino acid substitution at codon 87 (p. Val87Asp) in the GFAP. The same heterozygous variant was detected in her mother. This mutation has never been described before in the literature. This case should raise awareness for this rare and under-recognized disease in juvenile–adult cases.

Details

Language :
English
ISSN :
16642295
Volume :
15
Database :
Directory of Open Access Journals
Journal :
Frontiers in Neurology
Publication Type :
Academic Journal
Accession number :
edsdoj.79fe45a22b9c44e2b5012d7b04778f29
Document Type :
article
Full Text :
https://doi.org/10.3389/fneur.2024.1362013