Back to Search Start Over

A Multi-GNSS/IMU Data Fusion Algorithm Based on the Mixed Norms for Land Vehicle Applications

Authors :
Chen Jiang
Dongbao Zhao
Qiuzhao Zhang
Wenkai Liu
Source :
Remote Sensing, Vol 15, Iss 9, p 2439 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

As a typical application of geodesy, the GNSS/INS (Global Navigation Satellite System and Inertial Navigation System) integrated navigation technique was developed and has been applied for decades. For the integrated systems with multiple sensors, data fusion is one of the key problems. As a well-known data fusion algorithm, the Kalman filter can provide optimal estimates with known parameters of the models and noises. In the literature, however, the data fusion algorithm of the GNSS/INS integrated navigation and positioning systems is performed under a certain norm, and performance of the conventional filtering algorithms are improved only under this fixed and limited frame. The mixed norm-based data fusion algorithm is rarely discussed. In this paper, a mixed norm-based data fusion algorithm is proposed, and the hypothesis test statistics are constructed and adopted based on the chi-square distribution. Using the land vehicle data collected through the multi-GNSS and the IMU (Inertial Measurement Unit), the proposed algorithm is tested and compared with the conventional filtering algorithms. Results show that the influences of the outlying measurements and the uncertain noises are weakened with the proposed data fusion algorithm, and the precision of the estimates is further improved. Meanwhile, the proposed algorithm provides an open issue for geodetic applications with mixed norms.

Details

Language :
English
ISSN :
20724292
Volume :
15
Issue :
9
Database :
Directory of Open Access Journals
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
edsdoj.79fb470b30d144928cc62a6d9a2c5c90
Document Type :
article
Full Text :
https://doi.org/10.3390/rs15092439