Back to Search
Start Over
The Degradation of Aqueous Oxytetracycline by an O3/CaO2 System in the Presence of HCO3−: Performance, Mechanism, Degradation Pathways, and Toxicity Evaluation
- Source :
- Molecules, Vol 29, Iss 3, p 659 (2024)
- Publication Year :
- 2024
- Publisher :
- MDPI AG, 2024.
-
Abstract
- This research constructed a novel O3/CaO2/HCO3− system to degrade antibiotic oxytetracycline (OTC) in water. The results indicated that CaO2 and HCO3− addition could promote OTC degradation in an O3 system. There is an optimal dosage of CaO2 (0.05 g/L) and HCO3− (2.25 mmol/L) that promotes OTC degradation. After 30 min of treatment, approximately 91.5% of the OTC molecules were eliminated in the O3/CaO2/HCO3− system. A higher O3 concentration, alkaline condition, and lower OTC concentration were conducive to OTC decomposition. Active substances including ·OH, 1O2, ·O2−, and ·HCO3− play certain roles in OTC degradation. The production of ·OH followed the order: O3/CaO2/HCO3− > O3/CaO2 > O3. Compared to the sole O3 system, TOC and COD were easier to remove in the O3/CaO2/HCO3− system. Based on DFT and LC-MS, active species dominant in the degradation pathways of OTC were proposed. Then, an evaluation of the toxic changes in intermediates during OTC degradation was carried out. The feasibility of O3/CaO2/HCO3− for the treatment of other substances, such as bisphenol A, tetracycline, and actual wastewater, was investigated. Finally, the energy efficiency of the O3/CaO2/HCO3− system was calculated and compared with other mainstream processes of OTC degradation. The O3/CaO2/HCO3− system may be considered as an efficient and economical approach for antibiotic destruction.
- Subjects :
- O3
CaO2
HCO 3 −
oxytetracycline
degradation
Organic chemistry
QD241-441
Subjects
Details
- Language :
- English
- ISSN :
- 14203049
- Volume :
- 29
- Issue :
- 3
- Database :
- Directory of Open Access Journals
- Journal :
- Molecules
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.79c9074378054185be3fb61c341c0b96
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/molecules29030659